

# **Rasterization**

Teacher: A.prof. Chengying Gao(高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

**School of Data and Computer Science** 



#### To make an image, we can...



Drawing

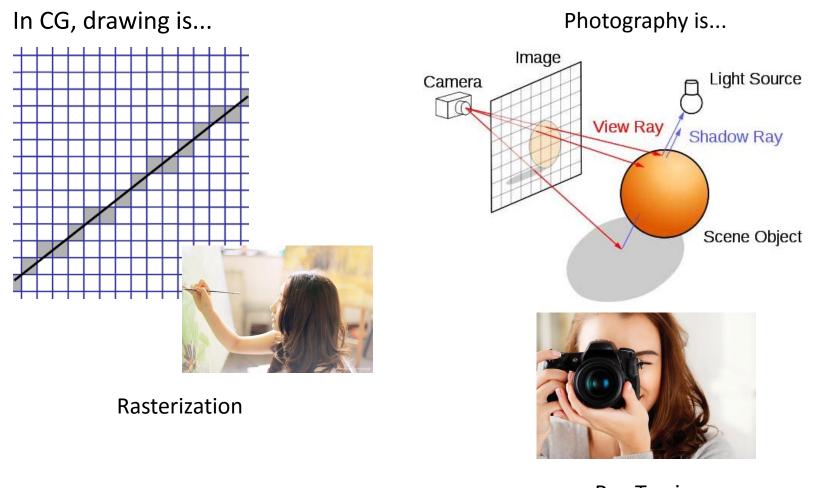
#### Photography







#### Two Ways to Render an Image

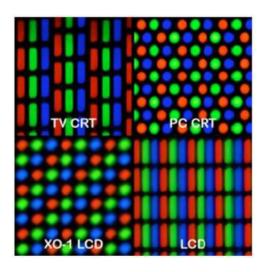


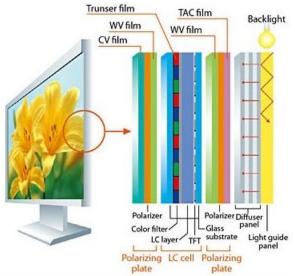
Ray Tracing



#### Screen

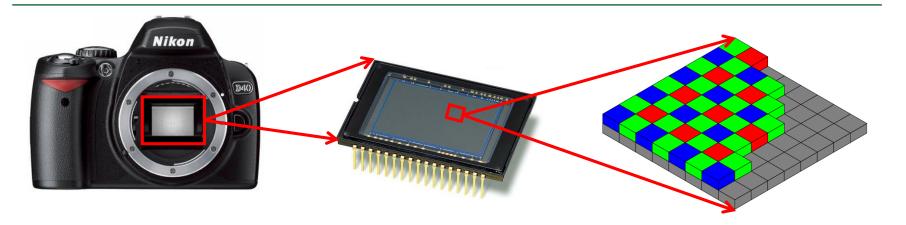


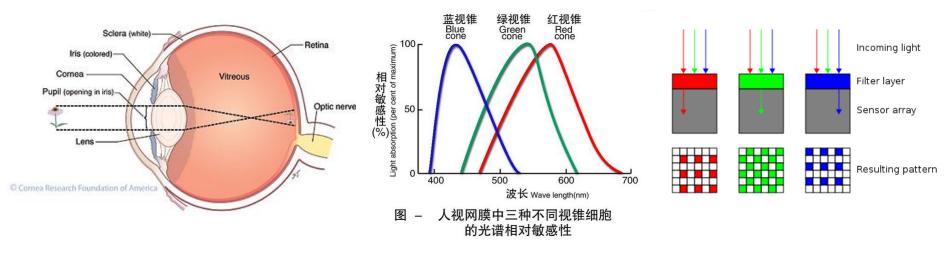






#### Sensors



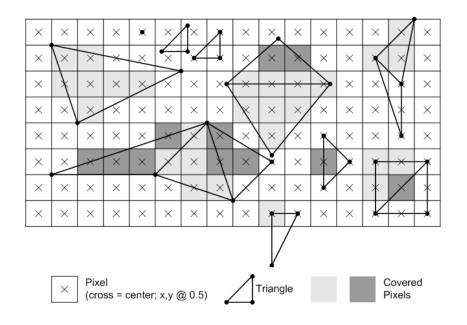


真实物理世界没有颜色的概念,只有频率。颜色只是人的主观感受,不是物体的客观属性,物体只是在发射或反射电磁波。



#### Rasterization

- The task of displaying a world modeled using primitives like lines, polygons, filled/patterned area, etc. can be carried out in two steps:
  - determine the pixels through which the primitive is visible,
  - determine the color value to be assigned to each such pixel

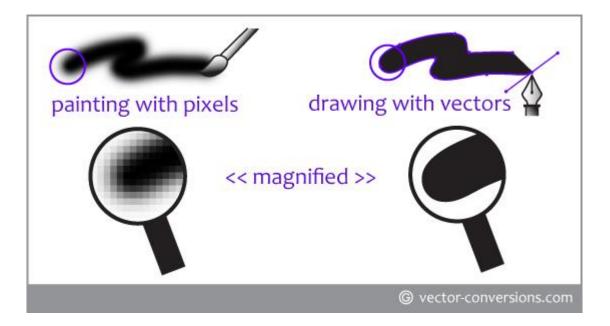




- The efficiency of these steps forms the main criteria to determine the performance of a display
- The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives
- High performance graphics workstations have most of these algorithms **implemented in hardware**
- Comparison of raster graphics editors :
- <a href="https://en.wikipedia.org/wiki/Comparison\_of\_raster\_graphics\_editors">https://en.wikipedia.org/wiki/Comparison\_of\_raster\_graphics\_editors</a>

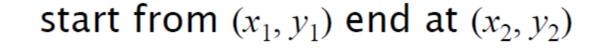


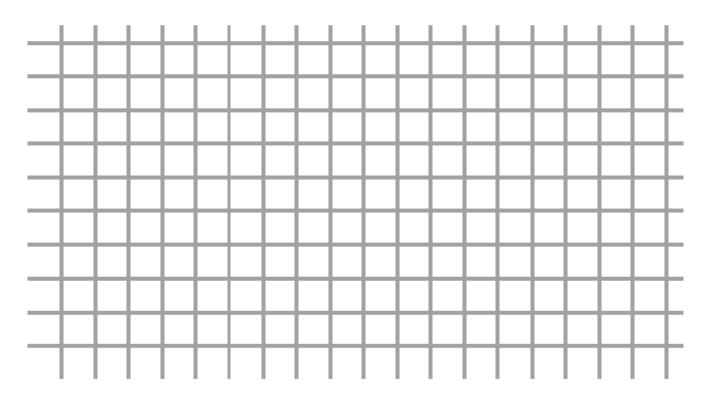
## To convert vector data to raster format



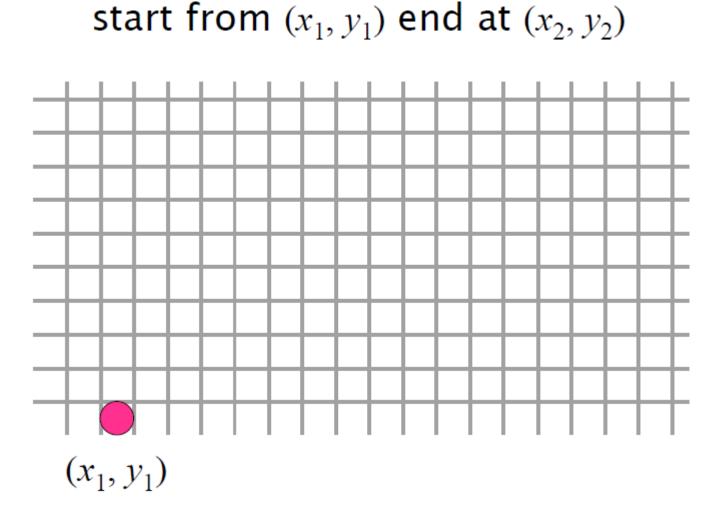
Scan Conversion: Figure out which pixel should to shade.

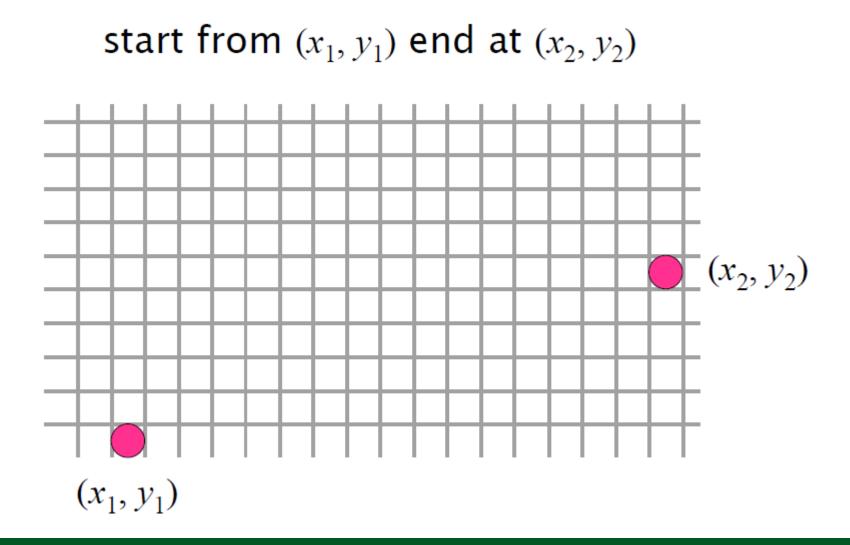




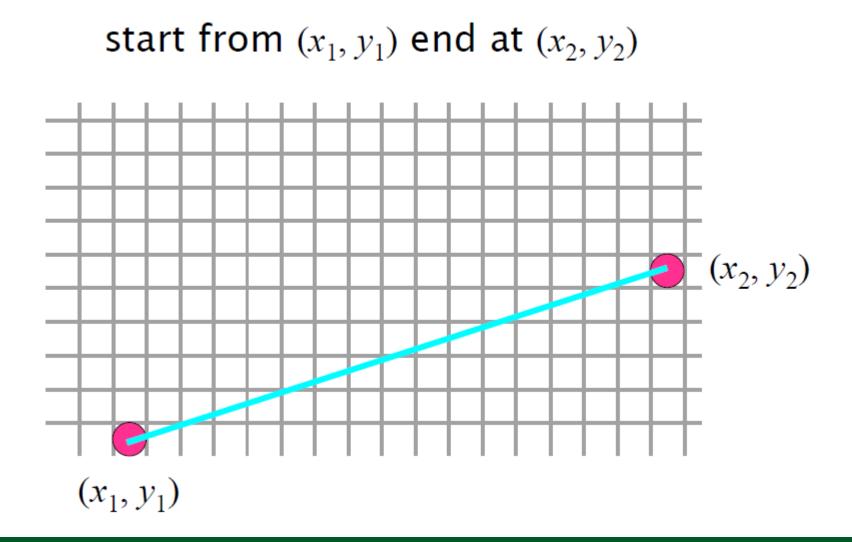




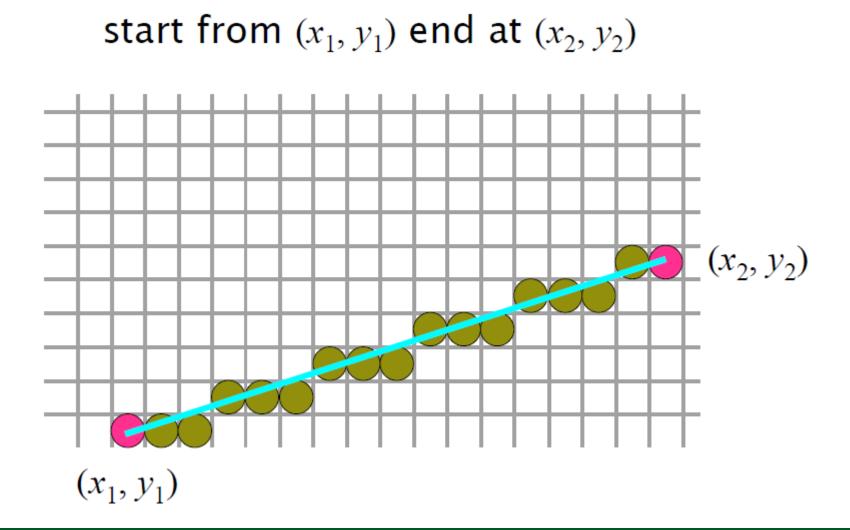










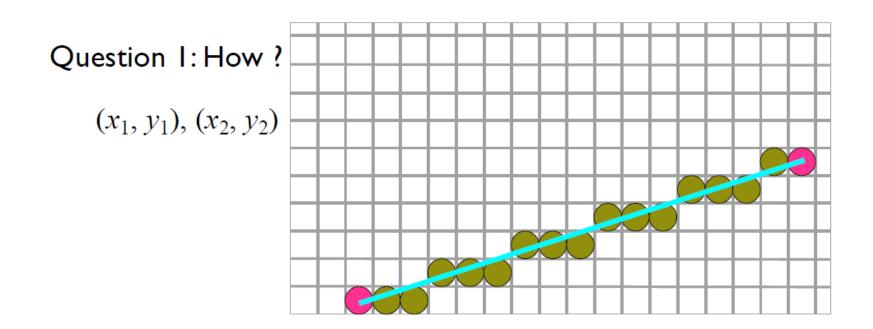




- Requirements
  - chosen pixels should lie as close to the ideal line as possible
  - the sequence of pixels should be as straight as possible
  - all lines should appear to be of constant brightness independent of their length and orientation
  - should start and end accurately
  - should be drawn as rapidly as possible
  - should be possible to draw lines with different width and line styles

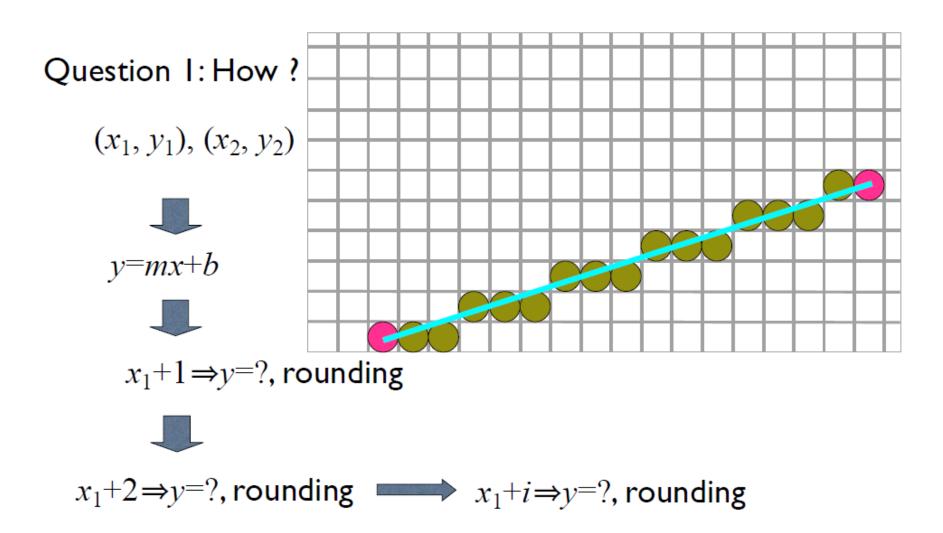


#### Scan converting lines





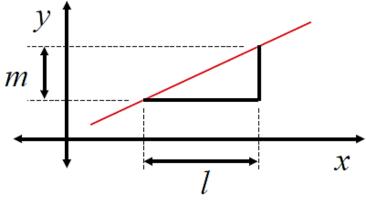
#### Scan converting lines





### **Equation of Line**

- Equation of a line is  $y m \cdot x + c = 0$
- For a line segment joining points
- $P(x_1, y_1)$  and  $Q(x_2, y_2)$  slope  $m = \frac{y_2 y_1}{x_2 x_1} = \frac{\Delta y}{\Delta x}$
- Slope *m* means that for every unit increment in *x* the increment in *y* is *m* units





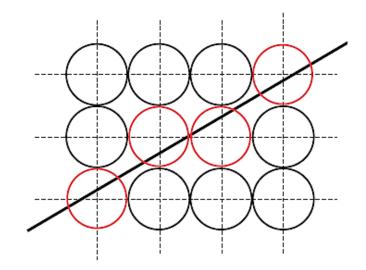
- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = mx_i + c$$
  
where,  $m = \frac{y^2 - y^1}{x^2 - x^1}$ 

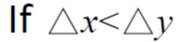
Incrementing X-coordinate by I  $x_i = x_i_{prev} + 1$ 

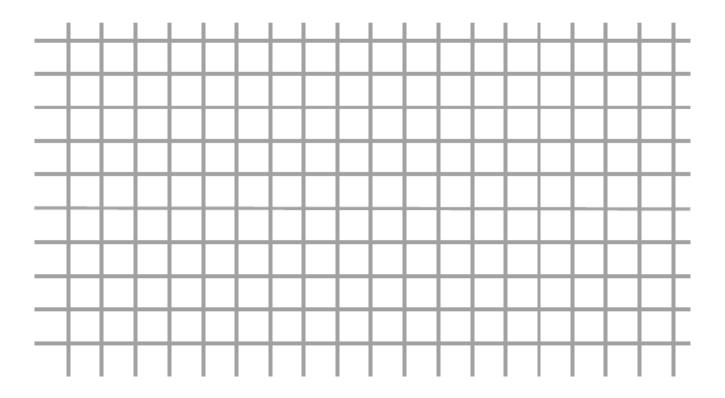
$$y_i = y_{i_prev} + m$$
  
he pixel for mound(w

Illuminate the pixel  $[x_i, round(y_i)]$ 



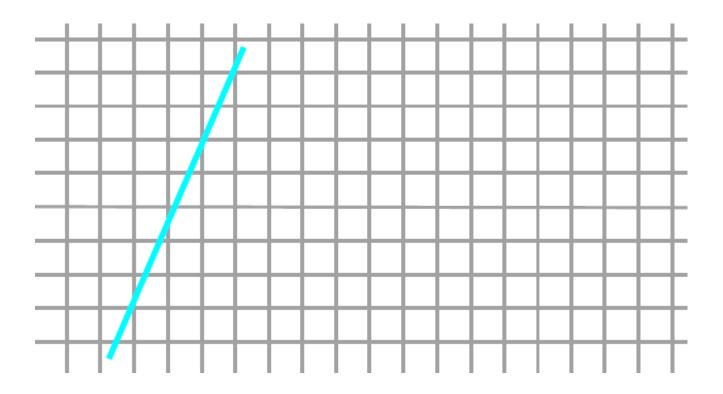




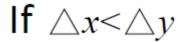


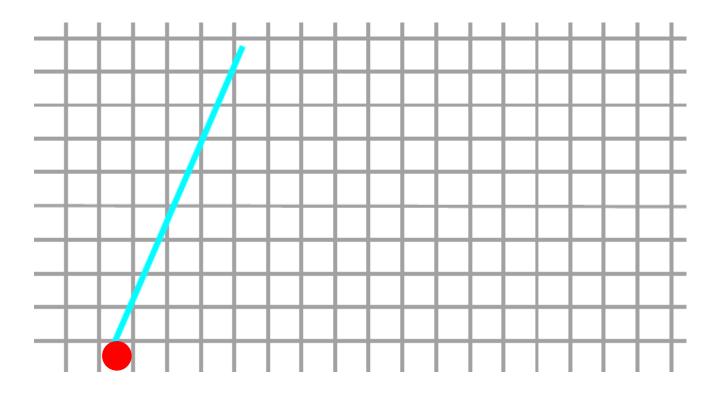


If  $\triangle x < \triangle y$ 

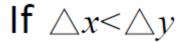


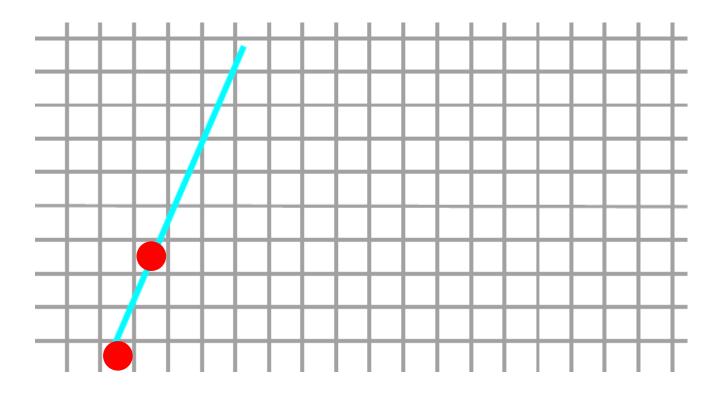




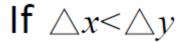


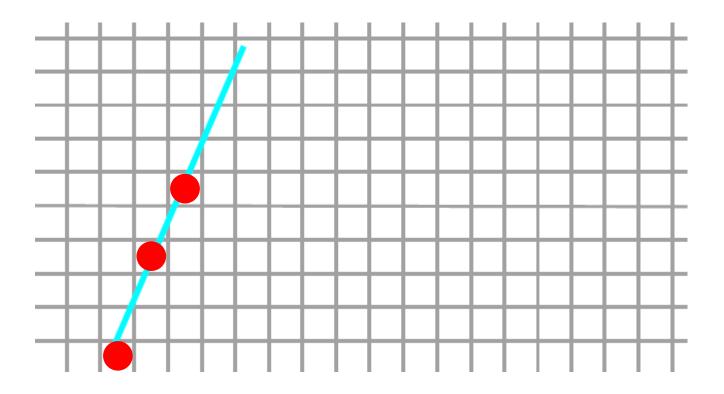




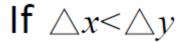


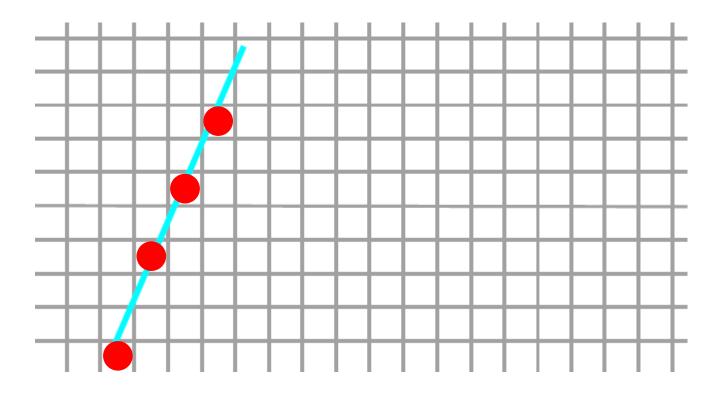




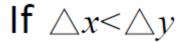


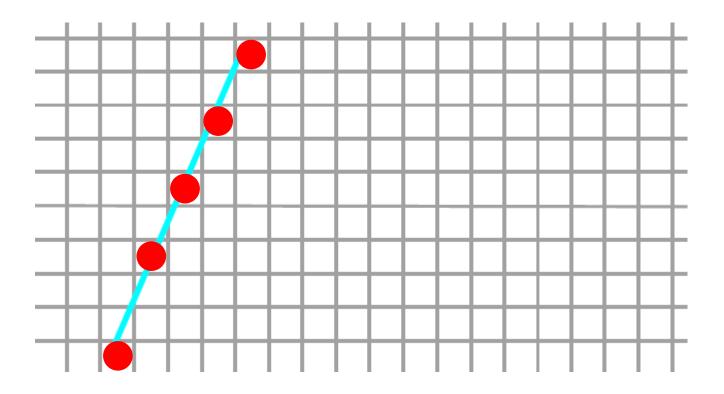




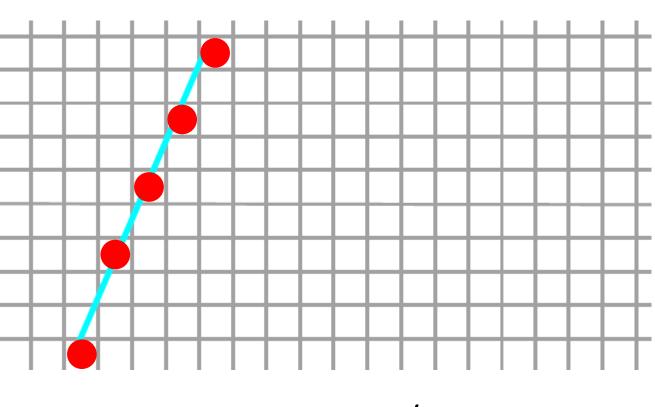






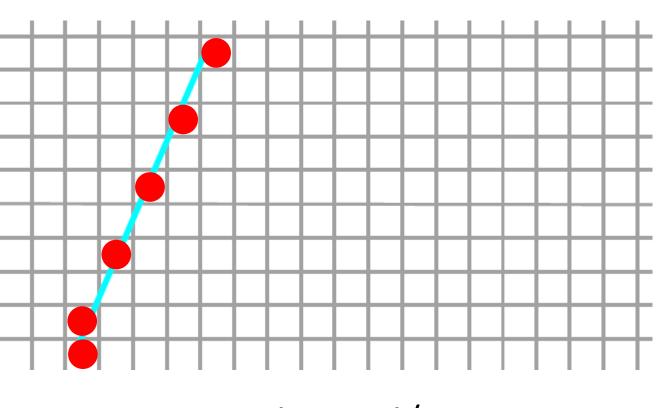






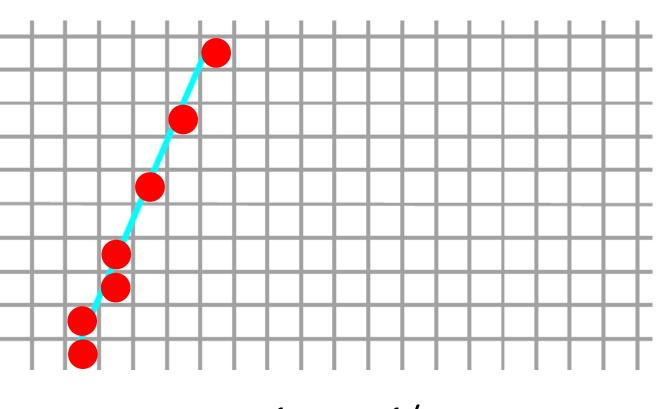
If  $\triangle x < \triangle y$ 





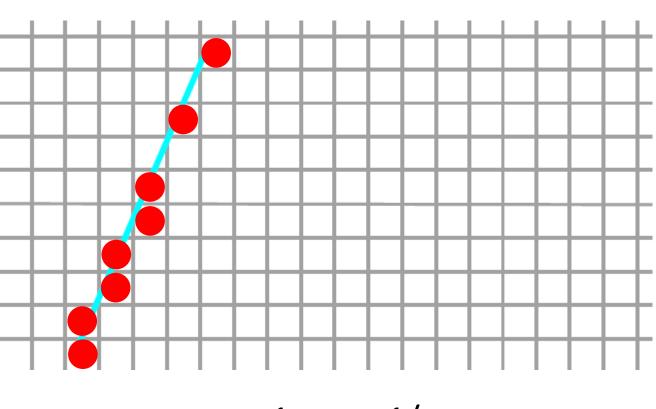
If  $\triangle x < \triangle y$ 





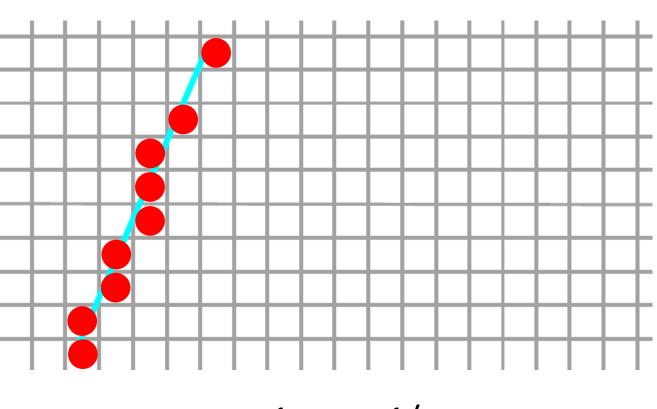
If  $\triangle x < \triangle y$ 





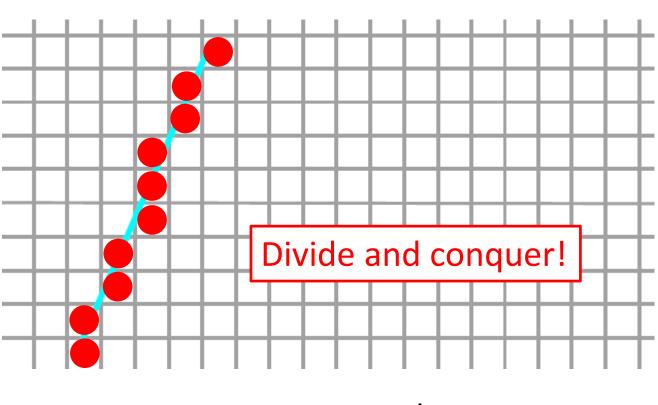
If  $\triangle x < \triangle y$ 





If  $\triangle x < \triangle y$ 





If  $\triangle x < \triangle y$ 





```
#include "device.h"
#include ROUND(a) ((int) (a+0.5))
Void LineDDA( int xa, int ya, int xb, int yb)
{
    int dx =xb-xa, dy=yb-ya, steps, k;
    float xIncrement, yIncrement, x=xa, y=ya;
```

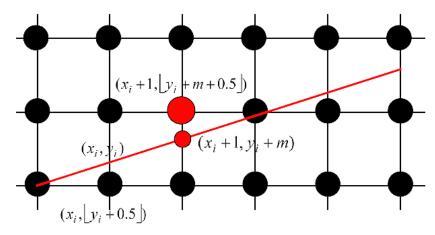
```
if (abs(dx)>abs(dy)) steps=abs(dx);
else steps=abs(dy);
xIncrement=dx/(float) steps;
yIncrement=dx/(float) steps;
```

```
setPixel (ROUND(x), ROUND(y));
for (k=0;k<steps; k++)
{ x+=xIncrement; y+=Yincrement; SetPixel (ROUND(x), ROUND(y)); }
```



### Bresenham's algorithm (布兰森汉姆算法)

- Introduced in 1967 by J. Bresenham of IBM
- Best-fit approximation under some conditions
- In DDA, only y<sub>i</sub> is used to compute y<sub>i</sub>+1, the information for selecting the pixel is neglected
- Bresenham algorithm employs the information to constrain the position of the next pixel





#### Notations

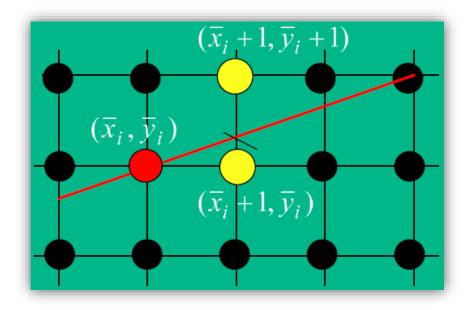
- The line segment is from  $(x_0, y_0)$  to  $(x_1, y_1)$
- Denote  $\Delta x = x_1 x_0 > 0, \Delta y = y_1 y_0 > 0$   $m = \Delta y / \Delta x$
- Assume that slope  $\mid m \mid \leq 1$
- Like DDA algorithm, Bresenham Algorithm also starts from  $x = x_0$ and increases x coordinate by 1 each time
- Suppose the i-th point is  $(x_i, y_i)$
- Then the next point can only be one of the following two  $(\overline{x}_i + 1, \overline{y}_i) \ (\overline{x}_i + 1, \overline{y}_i + 1)$



# Criteria(判别标准)

• We will choose one which distance to the following intersection is shorter

$$x_{i+1} = x_i + 1$$
$$y_{i+1} = mx_{i+1} + B$$
$$= m(x_i + 1) + B$$

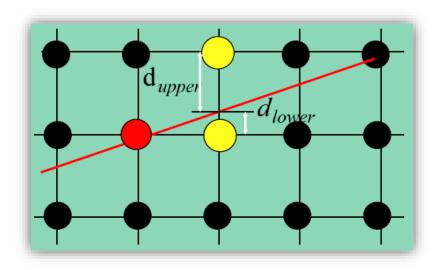




### **Computation of Criteria**

• The distances are respectively

$$d_{upper} = \overline{y}_i + 1 - y_{i+1}$$
$$= \overline{y}_i + 1 - mx_{i+1} - B$$
$$d_{lower} = y_{i+1} - \overline{y}_i$$
$$= mx_{i+1} + B - \overline{y}_i$$



显然:如果  $d_{lower} - d_{upper} > 0$  则应取右上方的点;如果  $d_{lower} - d_{upper} < 0$  则应取右边的点;  $d_{lower} - d_{upper} = 0$  可任取,如取右边点。



#### **Computation of Criteria**

$$d_{lower} - d_{upper} = m(x_i + 1) + B - \overline{y}_i - (\overline{y}_i + 1 - m(x_i + 1) - B)$$
  
= 2m(x<sub>i</sub> + 1) - 2 $\overline{y}_i$  + 2B - 1  
division operation

#### It has the same sign with

$$\begin{split} p_{i} &= \Delta x \bullet (d_{lower} - d_{upper}) = 2\Delta y \bullet (x_{i} + 1) - 2\Delta x \bullet \overline{y}_{i} + (2B - 1)\Delta x \\ &= 2\Delta y \bullet x_{i} - 2\Delta x \bullet \overline{y}_{i} + (2B - 1)\Delta x + 2\Delta y \\ &= 2\Delta y \bullet x_{i} - 2\Delta x \bullet \overline{y}_{i} + c \end{split}$$

#### where

$$\Delta x = x_1 - x_0, \Delta y = y_1 - y_0, \quad m = \Delta y / \Delta x$$
  
$$c = (2B - 1)\Delta x + 2\Delta y$$



#### **Restatement of the Criteria**

- If  $p_i \succ 0$ , then  $(\overline{x}_i + 1, \overline{y}_i + 1)$  is selected If  $p_i \prec 0$ , then  $(\overline{x}_i + 1, \overline{y}_i)$  is selected If  $p_i = 0$ , arbitrary one
- Can we simplify the computation of  $p_i$  ?

$$p_{0} = 2\Delta y \bullet x_{0} - 2\Delta x \bullet \overline{y}_{0} + (2B - 1)\Delta x + 2\Delta y$$
  
=  $2\Delta y \bullet x_{0} - 2(\Delta y \bullet x_{0} + B \bullet \Delta x) + (2B - 1)\Delta x + 2\Delta y$   
=  $2\Delta y - \Delta x$   
$$y_{i+1} = mx_{i+1} + B$$



### Recursive for computation of p<sub>i</sub>

• As

$$p_{i+1} - p_i = (2\Delta y \bullet x_{i+1} - 2\Delta x \bullet \overline{y}_{i+1} + c) - (2\Delta y \bullet x_i - 2\Delta x \bullet \overline{y}_i + c)$$
$$= 2\Delta y - 2\Delta x (\overline{y}_{i+1} - \overline{y}_i)$$

• If  $p_i \le 0$  then  $\overline{y}_{i+1} - \overline{y}_i = 0$  therefore

$$\mathbf{p}_{i+1} = \mathbf{p}_i + 2\Delta y$$

• If  $p_i > 0$  then  $\overline{y}_{i+1} - \overline{y}_i = 1$  therefore

$$\mathbf{p}_{i+1} = \mathbf{p}_i + 2\Delta y - 2\Delta x$$



### Summary of Bresenham Algorithm

• draw  $(x_0, y_0)$ 

- Calculate  $\Delta x$ ,  $\Delta y$ ,  $2\Delta y$ ,  $2\Delta y$   $2\Delta x$ ,  $p_0 = 2\Delta y \Delta x$
- If  $p_i \leq 0$  draw  $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i)$

and compute  $p_{i+1} = p_i + 2\Delta y$ 

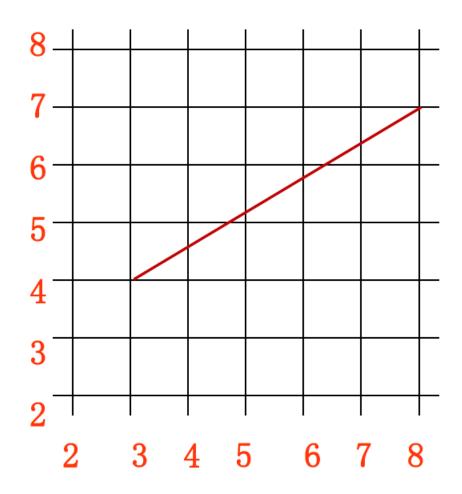
• If  $p_i > 0$  draw  $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i + 1)$ 

and compute  $p_{i+1} = p_i + 2\Delta y - 2\Delta x$ 

Repeat the last two steps



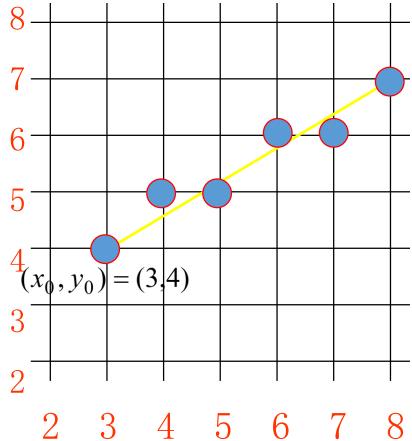
• Draw line segment (3,4)-(8,7)





# (Continued)

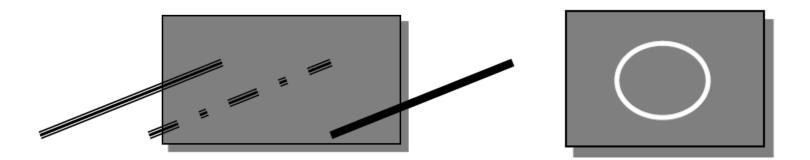
| $p_k$ | $(x_{k+1}, y_{k+1})$ | 8-                                                                                |
|-------|----------------------|-----------------------------------------------------------------------------------|
| 1     | (4,5)                | 6-                                                                                |
| -3    | (5,5)                | 5-                                                                                |
| 3     | (6,6)                | ر<br>۱ -                                                                          |
| -1    | (7,6)                | $\frac{4}{3}$                                                                     |
| 5     | (8,7)                | 2                                                                                 |
|       | 1<br>-3<br>3<br>-1   | 1       (4,5)         -3       (5,5)         3       (6,6)         -1       (7,6) |



 $f_i = p_0 = 2\Delta y - \Delta x \quad p_{i+1} = p_i + 2\Delta y \quad p_{i+1} = p_i + 2\Delta y - 2\Delta x$ 

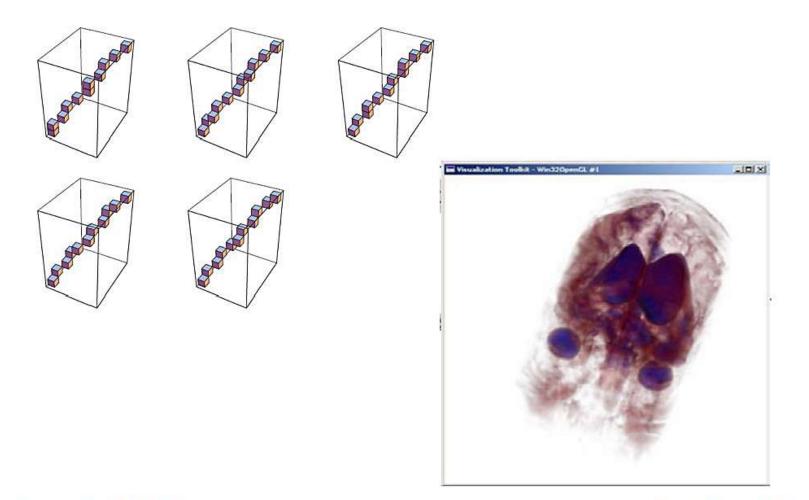
#### More Raster Line Issues

- The coordinates of endpoints are not integer
- Generalize to draw other primitives: circles, ellipsoids
- Line pattern and thickness?





#### 3D Bresenham algorithm



Computer Graphics @ ZJU

Hongxin Zhang, 2014

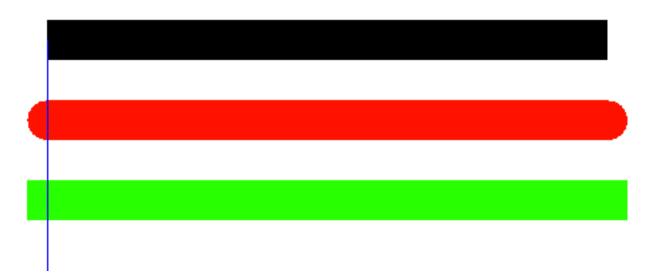


- Not too jaggy
- Uniform thickness of lines at different angles
- Symmetry, Line(P,Q) = Line(Q,P)

• A good line algorithm should be fast.



- line width
- dash patterns
- end caps: butt, round, square



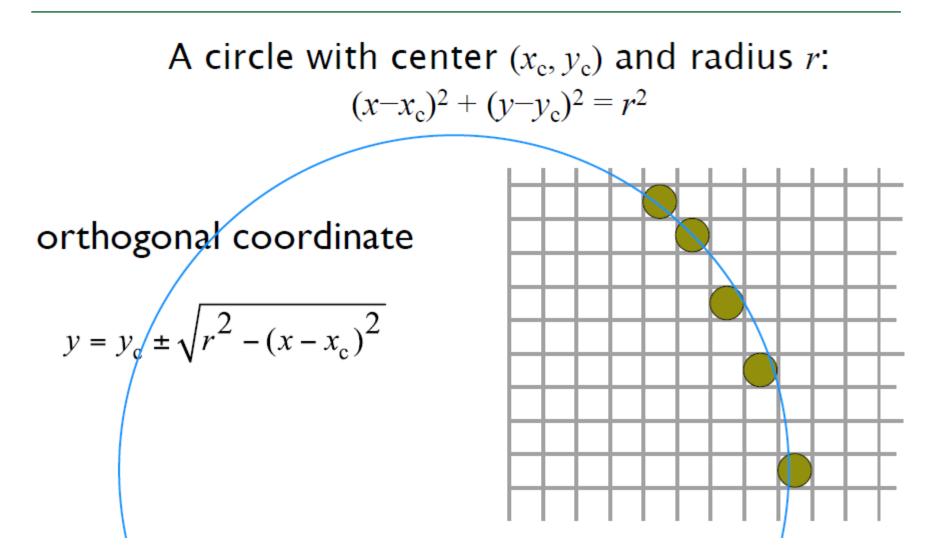


• Joins: round, bevel, miter





#### Scan conversion of circles

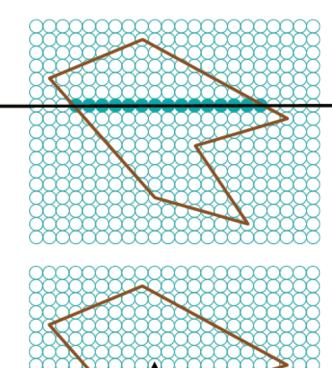




## **Polygon Rasterization**

Takes shapes like triangles and determines which pixels to set

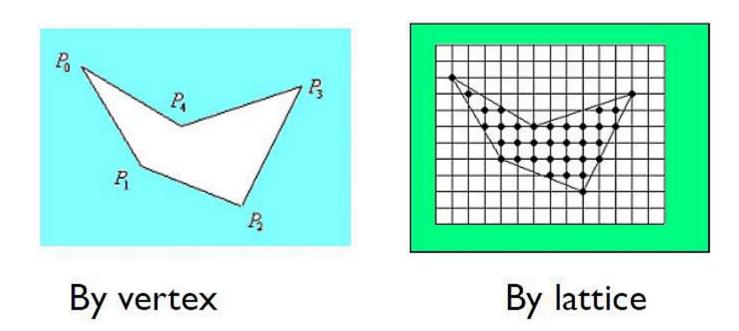
- 1. Polygon scan-conversion
  - sweep the polygon by scan line, set the pixels whose center is inside the polygon for each scan line
- 2. Polygon fill
  - select a pixel inside the polygon
  - grow outward until the whole polygon is filled





## Scan conversion of polygon

Polygon representation

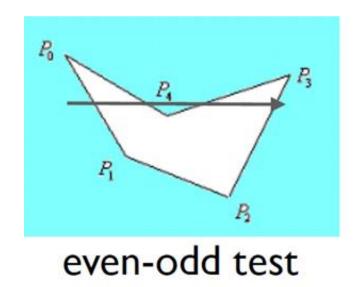


• Polygon filling:

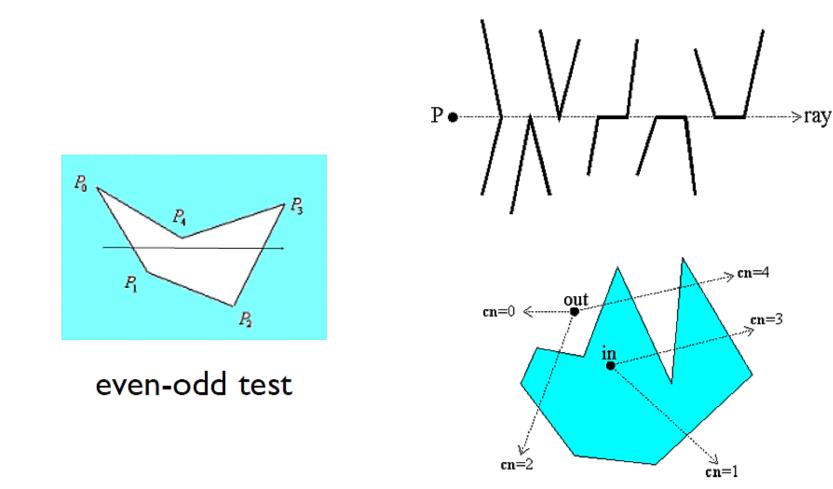
vertex representation  $\rightarrow$  lattice representation



 fill a polygonal area --> test every pixel in the raster to see if it lies inside the polygon.







Computer Graphics 2014, ZJU



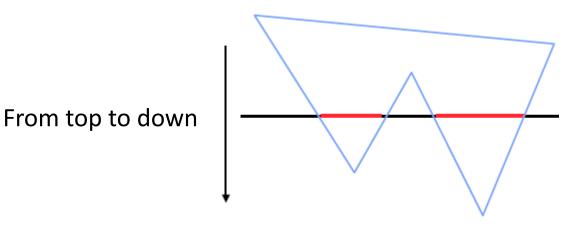
#### Scan-line Methods

- Makes use of the coherence properties
  - Spatial coherence : Except at the boundary edges, adjacent pixels are likely to have the same characteristics
  - Scan line coherence : Pixels in the adjacent scan lines are likely to have the same characteristics
- Uses intersections between area boundaries and scan lines to identify pixels that are inside the area



### Scan Line Method

- Proceeding from left to right the intersections are paired and intervening pixels are set to the specified intensity
- Algorithm
  - Find the intersections of the scan line with all the edges in the polygon
  - Sort the intersections by increasing X-coordinates
  - Fill the pixels between pair of intersections

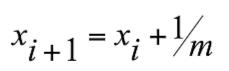


Discussion : How to speed up, or how to avoid calculating intersection



## Efficiency Issues Scan-line Methods

 Intersections could be found using edge coherence the X-intersection value x<sub>i+1</sub> of the lower scan line can be computed from the X-intersection value x<sub>i</sub> of the preceeding scanline as



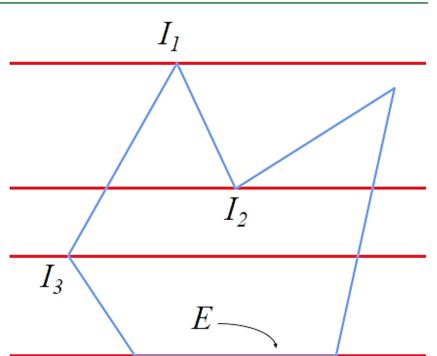
List of active edges could be maintained to increase efficiency

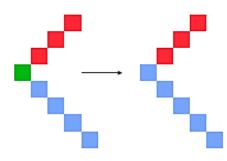
 Efficiency could be further improved if polygons are convex, much better if they are only triangles



### Special cases for Scan-line Methods

- Overall topology should be considered for intersection at the vertices
- Intersections like I<sub>1</sub> and I<sub>2</sub> should be considered as two intersections
- Intersections like I<sub>3</sub> should be considered as one intersection
- Horizontal edges like *E* need not be considered





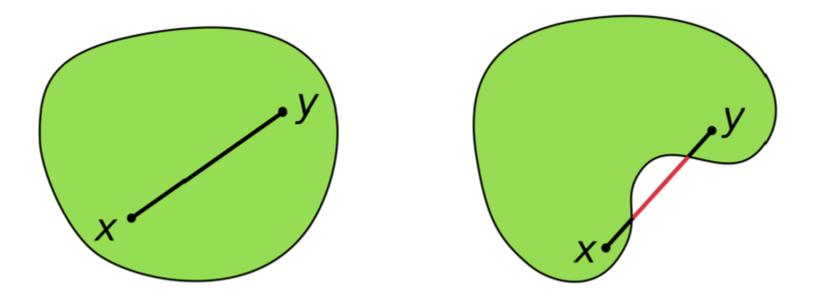


### Advantages of Scan Line method

- The algorithm is efficient
- Each pixel is visited only once
- Shading algorithms could be easily integrated with this method to obtain shaded area
- Efficient could be further improved if polygons are convex
- Much better if they are only triangles



#### What is Convex?

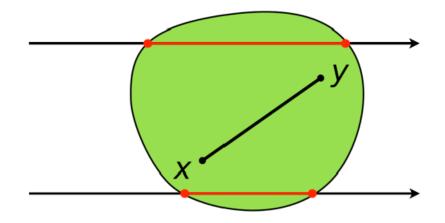


A set C in S is said to be **convex** if, for all x and y in C and all t in the interval [0,1], the point (1 - t) x + t y

#### is in C.



### **Convex Polygon Rasterization**



One in and one out

Computer Graphics 2014, ZJU

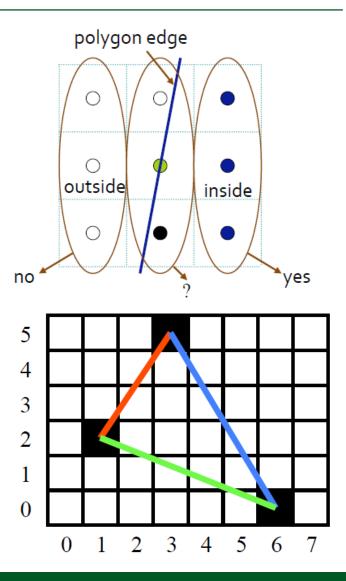


Two questions:

- which pixel to set?
- what color to set each pixel to?

How would you rasterize a triangle?

- 1. Edge-walking
- 2. Edge-equation
- 3. Barycentric-coordinate based

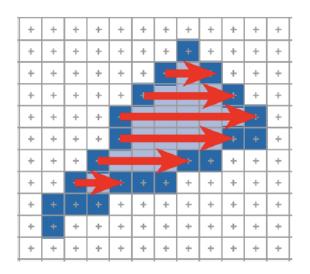




Idea:

- scan top to bottom in scan-line order
- "walk" edges: use edge slope to update coordinates incrementally
- on each scan-line, scan left to right (horizontal span), setting pixels
- stop when bottom vertex or edge is reached

| + | + | + | + | ÷ | + | + | + | ÷ | + | + | + |
|---|---|---|---|---|---|---|---|---|---|---|---|
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | ÷ | + | + | + | ÷ | + | + | + |
| + | + | + | + | + | + | + | + | ÷ | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | ÷ | + | + | + | ÷ | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | + | + | + | + | ÷ | + | + | + |
| 1 | 1 |   | - |   |   | 1 |   | 1 |   |   | 1 |





## Edge Walking

```
void edge walking (vertices T[3])
ł
  for each edge pair of T {
    initialize x_L, x_R;
    compute dx_{L}/dy_{L} and dx_{R}/dy_{R};
    for scanline at y {
      for (int x = x_L; x \le x_R; x++) {
        set pixel(x, y);
                                                dx
                                                                 dx_{\rm B}
                                           dy<sub>L</sub>
                                                                      ay<sub>R</sub>
    x_{L} += dx_{L}/dy_{L};
    x_{R} += dx_{R}/dy_{R};
}
```

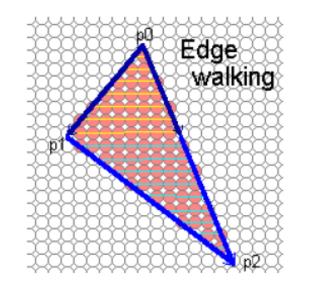
Funkhouser09

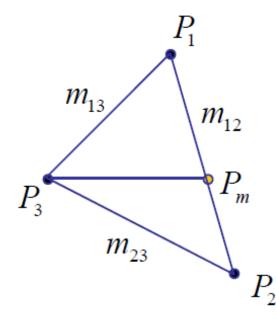


Edge Walking Triangle

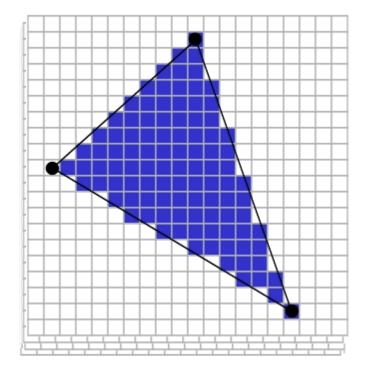
### Split triangles into two "trapezoids" with continuous left and right edges

scanTrapezoid(
$$x_3$$
,  $x_m$ ,  $y_3$ ,  $y_1$ ,  $\frac{1}{m_{13}}$ ,  $\frac{1}{m_{12}}$ )  
scanTrapezoid( $x_2$ ,  $x_2$ ,  $y_2$ ,  $y_3$ ,  $\frac{1}{m_{23}}$ ,  $\frac{1}{m_{12}}$ )





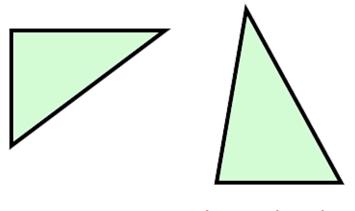




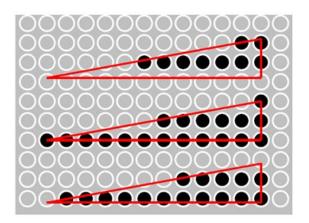
Advantage: very simple

Disadvantages:

- very serial (one pixel at a time) ⇒ can't parallelize
- inner loop bottleneck if lots of computation per pixel
- special cases will make your life miserable
  - horizontal edges: computing intersection causes divide by 0!

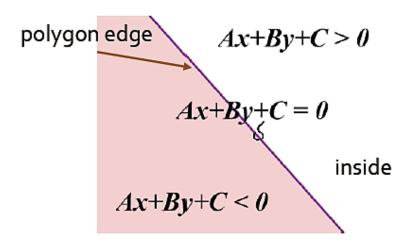


sliver: not even a single pixel wide





- 1. compute edge equations from vertices
  - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
- scan through each pixel and evaluate against all edge equations
- 3. set pixel if all three edge equations > 0





## **Edge Equations**

```
void edge equations (vertices T[3])
 bbox b = bound(T);
 foreach pixel(x, y) in b {
   inside = true;
   foreach edge line L_i of Tri {
    if (L_i.A*x+L_i.B*y+L_i.C < 0) {
      inside = false;
   if (inside) {
    set pixel(x, y);
```

can be rewritten to update the *L*'s incrementally by *y* and then by *x* 



## **Edge Equations**

Can we reduce #pixels tested?

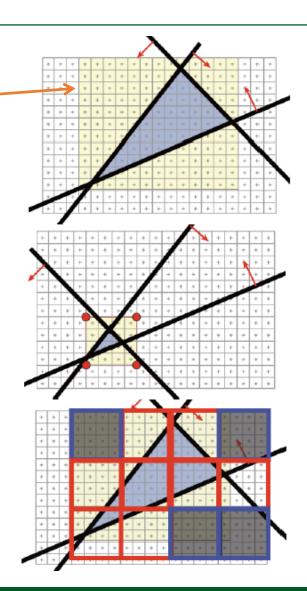
1. compute a bounding box:

 $x_{min}, y_{min}, x_{max}, y_{max}$  of triangle

- 2. compute edge equations from vertices
  - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
  - can be done incrementally per scan line
- scan through *each* pixel in bounding box and evaluate against all edge equations
   set pixel if all three edge equations > 0

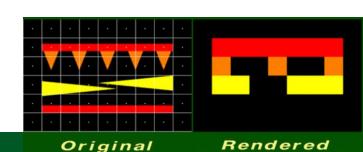
Hierarchical bounding boxes

how to quickly exclude a bounding box?





- Aliasing is caused due to the discrete nature of the display device
- Rasterizing primitives is like sampling a continuous signal by a finite set of values (point sampling)
- Information is lost if the rate of sampling is not sufficient. This sampling error is called *aliasing*.
- · Effects of aliasing are
  - -Jagged edges
  - -Incorrectly rendered fine details
  - -Small objects might miss



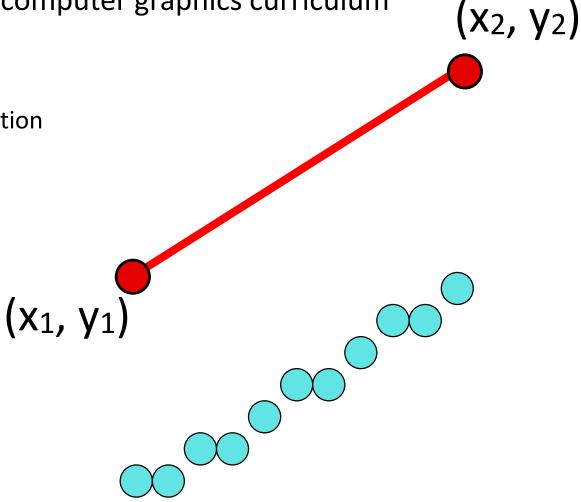


**Computer Graphics** 

Loss of detail

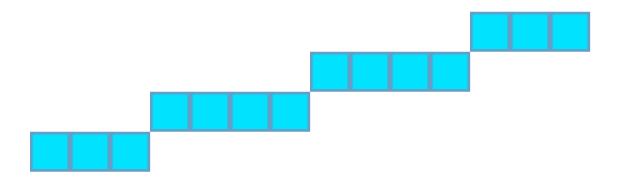
## Aliasing

- A classic part of the computer graphics curriculum
- Input:
  - Line segment definition
  - (x1, y1), (x2, y2)
- Output:
  - List of pixels



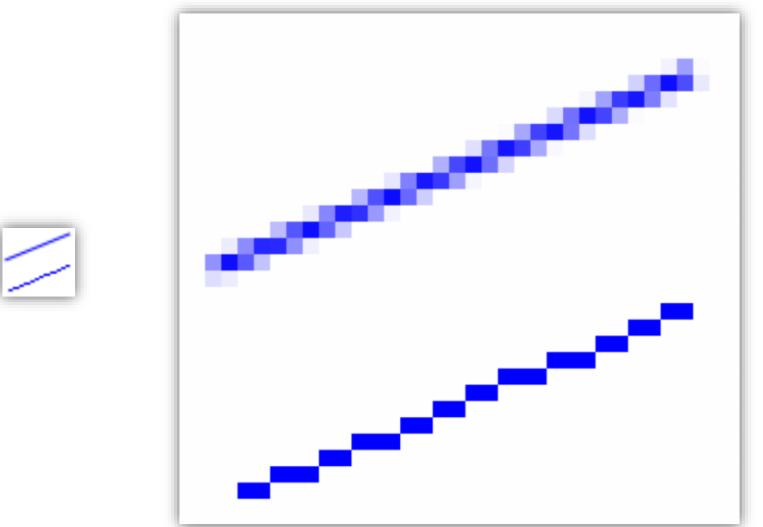


- How Do They Look?
- So now we know how to draw lines
- But they don't look very good:





## Antialiasing







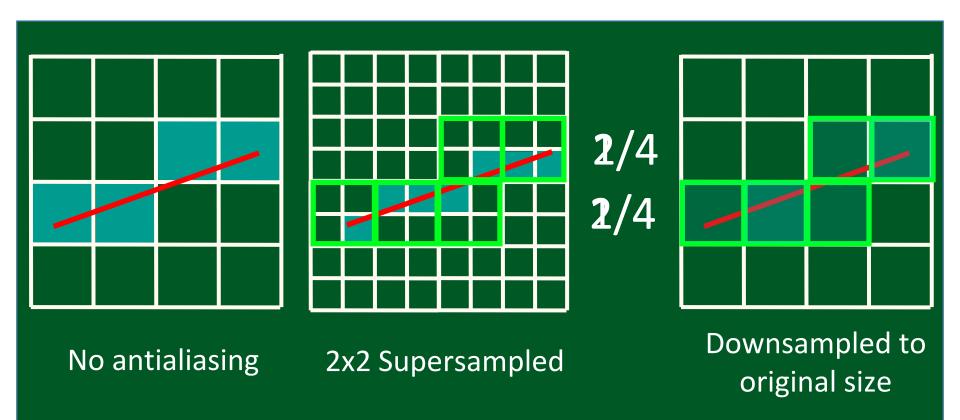
- Application of techniques to reduce/eliminate aliasing artifacts.
- Essentially 3 techniques:
  - Super-sampling vs. filter
    - We discussed a simple averaging filter
  - Compute the fraction of a line that should be applied to a pixel
    - Ratio method
  - Area Simpling



- Technique:
  - 1. Create an image 2x (or 4x, or 8x) bigger than the real image
  - 2. Scale the line endpoints accordingly
  - 3. Draw the line as before
    - No change to line drawing algorithm
  - 4. Average each 2x2 (or 4x4, or 8x8) block into a single pixel

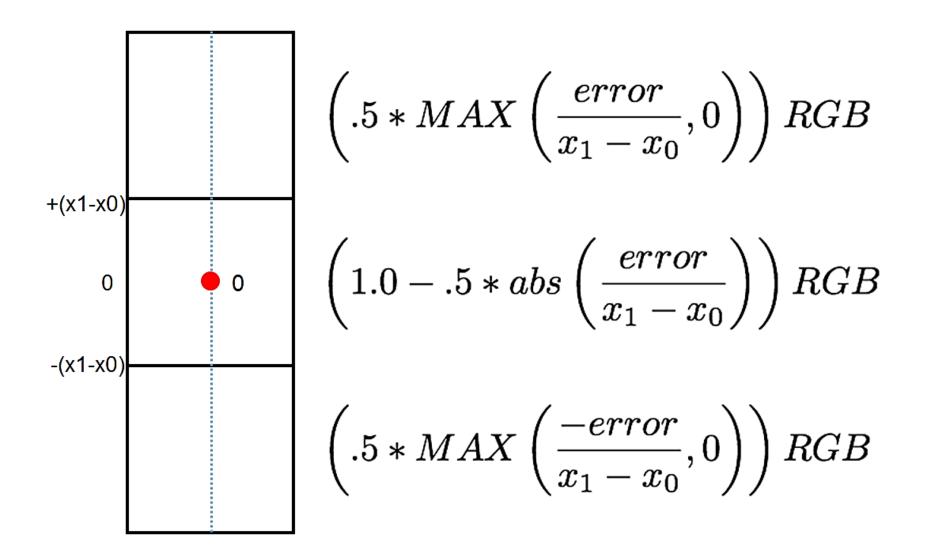


### Anti-aliasing: Super-sampling



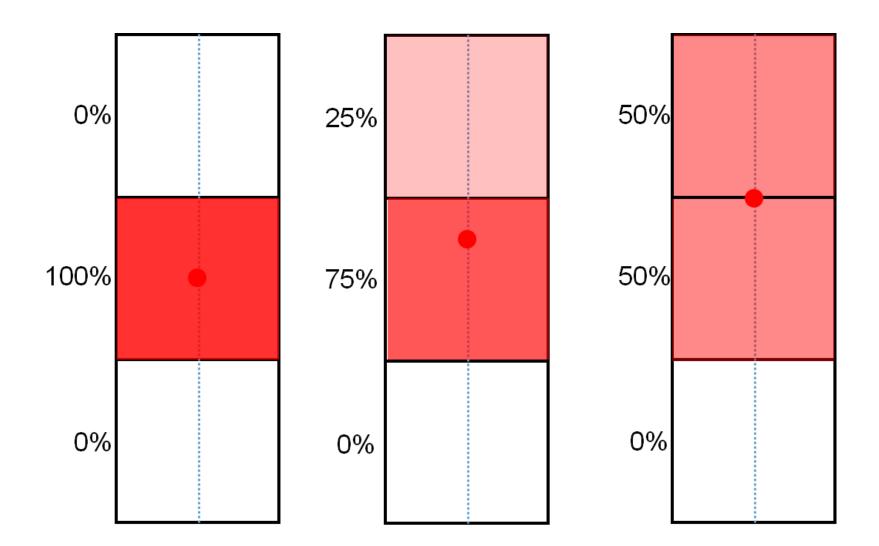


#### Anti-aliasing: Ratios



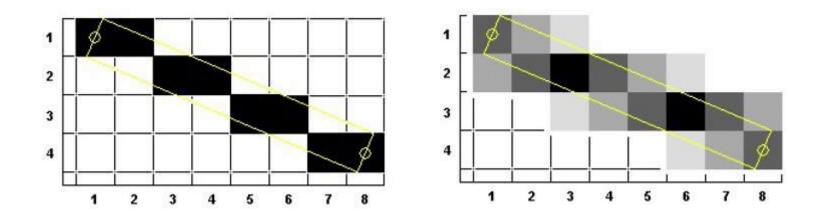


#### Anti-aliasing: Ratios





## Anti-aliasing (Area Sampling)



- A scan converted primitive occupies finite area on the screen
- Intensity of the boundary pixels is adjusted depending on the percent of the pixel area covered by the primitive. This is called weighted area sampling

